Towards better understanding of genetics in Leptosphaeria-Brassica interactions via international collaborations to standardize the nomenclature of blackleg resistance genes
The best approach to manage blackleg disease is the use of canola cultivars that are genetically resistant to the pathogen. However, cultivars that contain the resistant (R) gene(s) against the most prevalent pathogen race(s) are more likely to be effective in controlling blackleg disease. Among the various tools developed from this and other similar projects, markers for race determination of blackleg pathogen and markers that determine the type of R gene in canola cultivars have the most practical and immediate benefit for canola farmers by helping them to achieve both goals.
From field to the genome. Application of 3rd generation sequencing to direct genotyping of canola pathogens
We applied target capture sequencing to canola root galls and soil samples from three fields in Alberta. Sequencing data showed that the clubroot pathogen pathotype 3H was present in two fields. A third field sample showed presence of new mutations in one of the target sequences indicating presence of clubroot pathotype 3H and potentially other pathotype that were not present in our clubroot sequence dataset. We also determined the genotype of blackleg races from three canola stems infected with blackleg and determined a mixture of blackleg species as well as other pathogenic fungi present in these samples.
Increasing abiotic (drought) and biotic (clubroot) resistance in Brassica species (Arabidopsis and Canola) by modifying auxin response
This project focused on increasing our knowledge on plant host-clubroot pathogen interactions by determining if reducing the ability of the pathogen to use the plant hormone auxin (responsible for cell grow, division and expansion in the plant) would reduce clubroot disease progression, particularly at the gall forming stage.
Modified lipid metabolism to deliver improved low temperature tolerance in Brassica napus
The output of the project will be a better understanding of the role of lipid composition in low temperature performance in B. napus seedlings. The objective is to identify new targets for breeding canola with improved low temperature characteristics.
Determine the contribution of specific defence genes to Sclerotinia sclerotiorum resistance in canola (Brassica napus)
The proposed research will demonstrate the effectiveness of specific genes in canola for resistance to sclerotinia. Plant breeders will be able to select QTLs to increase the likelihood of capturing these resistance genes in breeding lines.
Identifying the optimal root system architecture (RSA) for Brassica crops
The current project aims to define a root system architecture RSA that contributes to improved NUE for canola and will allow the reduction of nitrogen inputs while maintaining productivity. With increasing temperatures predicted for the Prairies in coming years it is becomes imperative to generate climate resilient crops.
Defining populations of Plasmodiophora brassicae with near isogenic Brassica napus lines
The differential lines will provide canola pathologists and breeders with an extremely valuable tool for assessing the effectiveness of resistance. They will be made available to the canola industry for variety development, which will ensure that Saskatchewan producers have a diverse range of clubroot resistant cultivars to select from.
Identification and genetic mapping of novel genes for resistance to blackleg in Chinese and Canadian Brassica napus varieties
Genetic resistance is considered as the most efficient method for control of blackleg. Previous research results indicate that both Canadian and Chinese B. napus varieties could carry novel genes for resistance to blackleg. Therefore, it is necessary to identify and map the unknown R genes in the canola varieties.
Manipulating recombination in crop polyploids
There is a pressing need to improve productivity of crops, in order to maximize yield without further expanding arable land. The ability to make further crop improvements relies on the introduction of novel allelic variation, one such source being related species; however, interspecific barriers to recombination limit the transfer of new variation into crops.
Addressing yield stability drivers of canola in a changing climate using high throughput phenotyping
The tools developed and verified through this project will enable efficient development of resilient varieties. The results support potential of canola digital phenotypes to field-scale agronomic applications. The expansive data sets and samples generated through this project are and will be used in various research projects, extending the utility of grower-invested research dollars.
Pre-breeding lines combining canola quality with sclerotinia resistance, good agronomy and genomic diversity from PAK93
Seed of PAK93-based pre-breeding lines will be more attractive to plant breeding companies than the original germplasm such as PAK54, primarily because it will be faster to develop hybrid varieties that combine the desirable traits from PAK93-derived lines with other important traits such as herbicide tolerance and resistance to the diseases, blackleg and clubroot.
Enabling Canola Protein Optimization (ECPO)
Increase canola protein inclusion rates in monogastric animal feeds, followed by canola germplasm that produces protein better suited for human diets, and finally specialty varieties that produce protein for specific technical applications.